Multimodal imaging of nanovaccine carriers targeted to human dendritic cells.

نویسندگان

  • Luis J Cruz
  • Paul J Tacken
  • Fernando Bonetto
  • Sonja I Buschow
  • Huib J Croes
  • Mietske Wijers
  • I Jolanda de Vries
  • Carl G Figdor
چکیده

Dendritic cells (DCs) are key players in the initiation of adaptive immune responses and are currently exploited in immunotherapy against cancer and infectious diseases. The targeted delivery of nanovaccine particles (NPs) to DCs in vivo is a promising strategy to enhance immune responses. Here, targeted nanovaccine carriers were generated that allow multimodal imaging of nanocarrier-DC interactions from the subcellular to the organism level. These carriers were made of biodegradable poly(D,L-lactide-co-glycolide) harboring superparamagnetic iron oxide particles (SPIO) and fluorescently labeled antigen in a single particle. Targeted delivery was facilitated by coating the NPs with antibodies recognizing the DC-specific receptor DC-SIGN. The fluorescent label allowed for rapid analysis and quantification of specific versus nonspecific uptake of targeted NPs by DCs compared to other blood cells. In addition, it showed that part of the encapsulated antigen reached the lysosomal compartment of DCs within 24 h. Moreover, the presence of fluorescent label did not prevent the antigen from being presented to antigen-specific T cells. The incorporated SPIO was applied to track the NPs at subcellular cell organel level using transmission electron microscopy (TEM). NPs were found within endolysosomal compartments, where part of the SPIO was already released within 24 h. Furthermore, part of the NPs seemed to localize within the cytoplasm. Ex vivo loading of DCs with NPs resulted in efficient labeling and detection by MRI and did not abolish cell migration within collagen scaffolds. In conclusion, incorporation of two imaging agents within a single carrier allows tracking of targeted nanovaccines on a subcellular, cellular and possibly organism level, thereby facilitating rational design of in vivo targeted vaccination strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted Cancer Diagnostic and Therapeutic Agents: Delivery by Carriers or Conjugation

Receptors and proteins are overexpressed in many human cancer cell membranes rather than normal tissues and are considered as the main molecular targets. Specific tumor- targeting molecules which have high affinity for these receptors can be valuable tools as carrier molecules for targeted cancer therapy and imaging. Pharmacokinetics and bioavailability of diagnostic and therapeutic agents are ...

متن کامل

Specific and Efficient Uptake of Surfactant-Free Poly(Lactic Acid) Nanovaccine Vehicles by Mucosal Dendritic Cells in Adult Zebrafish after Bath Immersion

Activation of mucosal immunity is a key milestone for next-generation vaccine development. Biocompatible polymer-based nanoparticles (NPs) are promising vectors and adjuvants for mucosal vaccination. However, their in vivo uptake by mucosae and their biodistribution in antigen-presenting cells (APCs) need to be better understood to optimize mucosal nanovaccine designs. Here, we assessed if APCs...

متن کامل

The role of nanoliposome bilayer composition containing soluble leishmania antigen on maturation and activation of dendritic cells

Objective(s): Dendritic cells (DCs) play a critical role in activation of T cell responses. Induction of type1 T helper (Th1) immune response is essential to generate protective immunity against cutaneous leishmaniasis. The intrinsic tendency of liposomes to have interaction with antigen-presenting cells is the main rationale to utilize liposomes as antigen carriers. In the present study, the e...

متن کامل

A Trifunctional Dextran-Based Nanovaccine Targets and Activates Murine Dendritic Cells, and Induces Potent Cellular and Humoral Immune Responses In Vivo

Dendritic cells (DCs) constitute an attractive target for specific delivery of nanovaccines for immunotherapeutic applications. Here we tested nano-sized dextran (DEX) particles to serve as a DC-addressing nanocarrier platform. Non-functionalized DEX particles had no immunomodulatory effect on bone marrow (BM)-derived murine DCs in vitro. However, when adsorbed with ovalbumine (OVA), DEX partic...

متن کامل

A Poly(Lactic-co-Glycolic) Acid Nanovaccine Based on Chimeric Peptides from Different Leishmania infantum Proteins Induces Dendritic Cells Maturation and Promotes Peptide-Specific IFNγ-Producing CD8+ T Cells Essential for the Protection against Experimental Visceral Leishmaniasis

Visceral leishmaniasis, caused by Leishmania (L.) donovani and L. infantum protozoan parasites, can provoke overwhelming and protracted epidemics, with high case-fatality rates. An effective vaccine against the disease must rely on the generation of a strong and long-lasting T cell immunity, mediated by CD4+ TH1 and CD8+ T cells. Multi-epitope peptide-based vaccine development is manifesting as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmaceutics

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 2011